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1 INTRODUCTION

As with Fourier analysis, the basic idea behind wavelet analysis is to decompose a function into the
sum of meaningful 'basis' functions. Unlike Fourier methods, however, the basis functions of
wavelet analysis exhibit some form of localisation in both the frequency and tume domains. The
desirability of such a decomposition is well recognised and has led to the development of the short
time Fourier transform. In what follows, it will be shown that wavelet techniques have several
features that make them an attractive alternative to the short time transform.

The following report describes some of the basic ideas that underlie a discrete wavelet analysis. A
non rigorous approach is used, but there are several references to more complete descriptions. The
major purpose is to give the reader sufficient understanding to allow a meaningful application of the
software that was developed as part of this project. Appendix A contains some FORTRAN
subroutines that are sufficient for a basic wavelet analysis. In addition, Appendix B describes an
associated PC software package that can perform a fairly comprehensive analysis. Several examples
of its use are included and these amply demonstrate the potential of a wavelet approach.

The report draws heavily on some papers by Daubechies [1] and Mallat [2,3]. In addition, extensive
use has been made of an excellent introductory paper by Strang [4] and a recent tutorial paper by
Rioul and Vetterli [5]. For more advanced material, the reader should consult the books by
Daubechies [6] and Ruskai et al [7].

2 THE SCALING FUNCTION

In Fourier analysis, the basis functions are generated by scaling the argument of a single function4

(O(t) =exp(it)). If the sequence 0), (ne Z) is generated according to Oj(t) =-(nt), it forms a basis

for L 2[-ltct (the space of Lebesgue square integrable functions on [--tir]). In the case of
wavelet analysis, the basis elements are generated from a single function by both a scaling and a

translation. Consider the problem of representing a function in terms of elements 0,, (i,jEZ) that
J

are generated from the single function 4) according to 4)--2"70(2jx-i). The simplest example of4
is the box function

1 O<x1 (1)
4)(x) = 0 otherwise

which leads to a step approximation Af for the function f where

I
= ai- 4), (2)

and the value of J sets the level of approximation. As illustrated in Figure 1, the accuracy will
increase as J grows (2"j is the width of a box at level J if the boxes have unit width at level
J=0).

For the above 4, it is of interest to note that

O(x) = 0(2x) + 0(2x-1) (3)

UNCLASSIFIED I
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In general, it will be required that p satisfies the dilation equation

O(x) = Ckt0,c(2 x-k) (4)

a property that is crucial to what follows. Up to a suitable normalisation factor, relation (4) will

define 0. The aormalisation fo(x) dx = I is chosen for the current considerations and this imposes

the condition E cý = 2. Function 0 is known as the scaling function.
k

If coefficients ck are zero, except possibly for some k between 0 and N, it can be shown [1] that
the scaling tunction will be Lero for points outside the interval [0,N]. (Except for the box function,

it will normally be required that 0(0)-=O(N)--0 .)

From (4), the Fourier transform of 0 is given by

E - ckf4(2x-k)exp(itox)dx (5)
kI

and, on setting y-2x-k,

$(o f0(y)ex P(O~~jY I( Ck x4 o 6

Define

P(O) CkeXp(iko) (7)

then

= (8)

from which

(w (0'~ ~ (9)

In the limit N-->-, this implies

P ((0(10)

since $(0) = 1.

2 UNCLASSIFIED
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Condition A P has a zero of order p at o0 = ic.

For m--0, 1,...,p-1, this implies that

S(-l)kk 'c, = 0 {11)
k

If condition A holds and f is a smooth function, coefficients ak can be found [6] such that

If - E ak,(2'x-k)I < C2 -'P If" (1  (12)
k

for some constant C. Such a result justifies the use of (2) as an approximation to f.

3 CALCULATION OF THE SCALING FUNCTION

Consider relation (4) at integer points from 1 to N-I (ck-O for k>N and k<0) This provides
the system

,02) 1 0 .2) (13)

[,O(N-1), 0(N-1)

where T has a maximum eigenvalue of 1. The power method can be used to fimd the corresponding
eigenvector and, up to a scaling factor, the components of this eigenvector will provide values for

0(1 )..... 4(N-l). Relation (4) can be used to find intermediate values and, after sufficient of these

have been calculated, the normalisation f0(x)dx-I imposed by use of a suitable quadrature

procedure.

Condition 0

Ip(wo)1+ Ip(w0t)12 l -- 1 (14)

or

ECk _2-k = 250. (15)
k

For fixed J, this implies that the Oi, are orthonormal.

UNCLASSIFIED 3
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Conditions 0 and A are desirable properties and will be satisfied [I] if P has the form

P(O) jl +exp(iw) )'L 16)
ý 2 QO)

where

IQ(O)K = (sin..y + (sin"7) R(-) (17)

and R is a real odd function.

The box scaling function corresponds to L = I and R =0 so that P(o) - 1 ÷+exp(io). Although this

2

scaling function is discontinuous, others of the same class become smoother as L increases (at least C

for L=2 , C' for L-4 and C' for L=7).

4 THE WAVELET FUNCTION

Consider the approximations A,.,f and Ajf. It can be shown [6] that

a,.If = af + Df (18)

where

D' = EdijWij (19)

and 4,, =2 7(2Jx-i) for a suitable wavelet function W. In the case of the box scale function, the

corresponding W is given by

I xE (0,!)

W(x) x (1 (20)
1XE(~1

0 otherwise

and is known as the Haar wavelet. It will be noted that

xV(x) = 0(2x)--0(2x-1) (21)

In general, the wavelet corresponding to the scale function 0 is given by

W(x) = E (-1)kclk(2x-k) (22)
k

4 UNCLASSIFIED
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This construction ensures that y4(x) i; orthogonal to O(x-rn) for mc-Z. Furthermore, condition 0

implies that y4, (iEZ) forms an orthonormal basis for the Df. Repeaung the reduction of
equation (18)

A = Df+ f+L) _f ÷D, +... + DJf +AJ (23)

and taking limits in J and K,

f = j d,' yI (24)

It can be shown [1 that W, (i,jE Z) form a orthonormal basis for functions in L 2(R) (the space of
Lebesgue square integrable functions).

If condition A holds, wavelet functions have the following important properties:

I1 fx '-J(x)dx=O for m=0 to p-I.

(2) For a C- function f, d,'<C2

Daubechies [1] has studied scaling functions that are defined by (16) and has calculated the

coefficients ck for R=0 and L from 1 to 10. For example, the box function corresponds toL=I

and has c,=cl=l. For L=2, cO=(l+VF3)/4, cl-(3+v-)/4, c,=(3-F)I4,c=(l-•6 )i4 and

C,=0 otherwise. Figures 2 ,3 and 4 show the scaling functions, wavelet funotions and their
corresponding Fourier transforms for the cases where L=1, 2 and 7. From these examples. it can be
seen that the scaling function has the nature of a low pass filter and the wavelet function the nature
of a band pass filter.

5 WAVELET ANALYSIS

For most applications, the function of interest is only known in terms of a finite number of samples.
In order to perform a wavelet analysis, these samples must be turned into an initial approximation

AJf. A wavelet analysis decomposes Ajf into its constituent projections

(D 1_|f, DJ_2f, DJ 3f ... ). Equivalently, the coefficients {a/ } of AJ are decomposed into the

coefficients ({ d,-1 ), { d/-2 }, ...) of the constituent projections. A major advantage of wavelet
analysis is the existence of fast algorithms for performing this reduction. The present section
describes these algorithms and their application. In addition, the interpretation of a wavelet analysis
is discussed.

UNCLASSIFIED 5
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Consider the decomposition

= -- + ÷ (25)

or, in terms. ot the basis functions,

a, E.,' a, + j (26)

where a,0--<J,,(> and d,- =<f, Wli,. (The inner product <f.g> is defined by kWgtOdi.)
R

Given a,'", what are a," and d,? From the definition of 0 ,, and relation (4).

ai, <f, O">

27 2=fft g)4(2JL -i)du
R

(27)
- 2"E CkfjAu)0(2 "lu-2i-k)du

R R

J27 c,,-,,,' ff0(2j*'u-K)du

JJ+

if K=2i +k. Since aK =<f,.•t.> =2-f- u)0(2J*1u- K)du, it follows that
R

a, = a"c_ a1 (28)

Consequently, to form the coefficients {a, }, convolve coefficients {a,"* with the filter
C

coefficients { .-..ý.) and keep alternate samples (a low pass filtering). In a similar fashion

-11
di (-1) Il_-,+, aK (29)

Consequently, to form the coefficients (dij}, convolve coefficients (a,'j'} with the filter

coefficients F 2 and keep alternate samples (a band pass filtering).

6 UNCLASSIFIED
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It is also possible to reconstruct the coetficients a,: from the coefficients {a,'} and td ,
From (28), it follow- that

<0 ,,,> = -(30,

and, from (29 ,

I1)- c :, t31)
V/T

Consequently, on taking the initer product of 0,,., with (26),

aJ1= I E ij'2 I E 32qT , F2- j 1)c--

In effect, coefficients (a,"'} are formed from coefficients (a,' and {d,} by adding the results of
C

two convolutions. The first convolution involves the coefficients f a,/ and I - )-. and the secoid
F2

involves the coefficients (d,} and F I.

In order to produce a practical implementation of the above procedures, it is necessary to work with

a finite amount of data. Unfortunately, the decomposition ofa'' = (a0"1j',a1j' ,...,a j'I) into

aE =(aj,a)., as,) and d' =(d, ,d d, J-., d _) requires elements that are not contained in a'*'. If

these elements are unknown, one possible procedure is to zerc. pad the known elements. It should be
noted, however, that this approach will lead to an increasing number of incorrec, coefficients as the

decomposition proceeds. After several steps of decomposition, many of the highest N, and lowest

N, components of the aj and dj will be contaminated. An alternative approach is to assume that
the initial data represents one period of a periodic function. It should be noted, however, that a
periodic function is not square integrable and so a complete decomposition into wavelets is

impossible. In this case, the decomposition will be meaningless beyond K steps for initial data

consisting of 2 K samples.

UNCLASSIFIED 7
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A further problem in the analysis of discrete data is the derivation of the initial coefficients { a, ' }.
These are calculated according to

a, <f, 0,>
J (33)

27jfu)0(2ju -i)du
R

In effect, the coefficients are obtained by sampling the function after passing it through a low pass

filter that corresponds to a suitably scaled 0. Consider the samples {f,J I taken from f at intervals

of 2 -J. The coefficients (a,' I can be approximated according to

J I-N

a, , 2 7 E 2-Jk)0(k-i) (34)
k-i

or. in a more convenient form,

J N

a,j - 27 Ok fkJ- (35)
k,0

where 0,k =O(k). This is an approximate implementation of the filtration and sampling processes.

Appendix A contains some FORTRAN subroutines for implementing (35) in the case of periodic
data that has been sampled at unit intervals (initial J zero).

The wavelet decomposition is economical in terms of both storage and computationa! requirement.

Firstly, the decomposition algorithm only requires O(M) operations if the origina. data set hasM

elements. Secondly, the data storage can be accomplished in the same area as the original data since aJ

becomes (aj-',d'1-) which then becomes (aJ- 2,dJ- 2 ,dJ-1) and so on. Appendix A contains some
FORTRAN subroutines for the wavelet decomposition (and reconstructi,,') of periodic data.

A wavelet decomposition, can be crudely regarded as a spectral analysis with frequency space
divided into bands of width proportional to their centre frequency (constant Q filtration).

Furthermore, the analysis exhibits some localisation in time (the domain of f). Referring to
Figure 5, the basis function corresponding to a given wavelet coefficient will make its major
contribution over the region that is delimited by the box surrounding the coefficient. Crudely, the
square moduli of the wavelet coefficients yield the distribution of energy in terms of time and

frequency. Referring to Figure 6, the various projections (DJf, D_1f, ... ) represent the original

function after it has passed through the filters corresponding to the different bands. Figure 7 shows
the projections for a sampled chirp function and analysing Daubechies wavelet with L=7. As is to
be expected, the projections migrate across the frequency plane as time advances. Figure 8 shows
the projections for a cubed sine wave. It will be noted that the signal has been split into components
that exhibit its two constituent frequencies.

8 UNCLASSIFIED
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Consider some sine wave data (Figure 9) and some noisy sine wave data (Figure 10). (Both data
sets consist of 128 samples). Figures I I and 12 show the respective wavelet expansion coefficients
for the Daubechies wavelet with L--4. Starting at the bottom, the horizontal rows represent d-',

d-. d-. d-', d-5 and d- (negative values indicated by the lighter shading). Quantities a-7 and
d-7 are represented in order by the vertical columns. (The number in the top right hand box is the
figure height in the coefficient scale). As is to be expected, the noise components are confined to
the finer scales.

6 SIGNAL STRUCTURE

The wavelet coefficients {dJ) can provide valuable information concerning the regularity of a
signal [81, regularity described in terms of Lipschitz exponents. Function f is Lipschitz ac at x if

there exists positive A and h0 such that

lfix) - P,(x-xo) 1_ A Ix - x. 1" (36)

for some polynomial P. (order n) and Ix-xoI<ho.

Function f is uniformly Lipschitz a over an interval if (36) holds for all pairs of points (x,xo) in
that interval. The following result [9] can be proved:

For a wavelet with greater than n vanishing moments, a function f is uniformly Lipschitz a if and
only if there exists K>O such that

2 a - (
dI I - (37)

for all j.

If the wavelet has compact support, it is obvious that the coefficients at finer scales will provide
localis-d information concerning the Lipschitz exponents a of the function.

Although the above result does not extend directly to negative exponents, the behaviour of the
wavelet coefficients can still provide a good indication of a. Figure 13 shows data sampled from a
function that contains a pulse, a step and a continuous transition. The corresponding wavelet
coefficients (Daubechies wavelet with L = 10) are shown in Figure 14. It will be noted that the
coefficient maxima exhibit the expected behaviour (the features have exponents a with values -1, 0
and I respectively). This ability to provide information about transient features constitutes one of the
major attractions of a wavelet approach.

UNCLASSIFIED 9
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Local results are more difficult to derive, but the following theorem has been proved by Jaffard [9].
If f is Lipschitz a at x,,

Id t'l 5 C 2 - ' - I( , 12 1 x •,, -i' L - ) (3 8 )

Conversely, if equation (38) holds and f is uniformly C5 for a positive number P. there exists a

polynomial P (depending on x,)) of degree less than Ct such that

lf x)-P(X-Xo))l :_ c IX-Xo"l° og (39)

and this result is optimal.

7 CONCLUSIONS

The present report has described discrete wavelet analysis through an approach that was pioneered
by Daubechies [1,61. This approach has been deveioped into a computer software package
(Appendix B) that can be used to analyse sampled data. The report has included many examples
that were produced using this package and these amply demonstrate the potential of a wavelet
approach to signal analysis. A major advantage of the approach is its ability to provide a degree of
time localisation and this, together with the existence of very fast algorithms, makes it a powerful
tool for analysing signals with transient features. In particular, wavelets have found an important
application in the analysis of speech [7]. It should be noted, however, that the approach only
provides spectral information in terms of frequency bins that have constant Q and so may not be
suitable for applications requiring a high degree of frequency resolution.

10 UNCLASSIFIED
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Figure I Box function approximations.
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Figure 2 Scale and wavelet functions for L = 1.
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Figure 3 Scale and wavelet functions for L = 2.
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Figure 4 Scale and wavelet functions for L = 7.
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Figure 5 Influence of wavelet coefficients in terms of frequency and time.
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Figure 6 Frequency range of projections.
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Figure 7 Decomposition of a chirp.

VV

Figure 8 Decomposition of a cubed sine wave.
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I -. 100E+01

Figure 9 Sine wave.

0. 123E+O 1

.957E+00

Figure 10 Noisy sine wave.
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Figure I11 Wavelet coefficients for sine wave.

NT-0. 58E+O1

Figure 12 Wavelet coefficients for noisy sine wave.
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O. 100E+O1

,-O._ OE+00

Figure 13 Data from function with singular behaviour.

HT-0.75E+01

Figure 14 Wavelet coefficients for function with singular behaviour.

UNCLASSIFIED 19



SRL-0122-TR UNCLASSIFIED

THIS IS A BLANK PAGE

20 UNCLASSIFIED



UNCLASSIFIED SRL-0122.TR

APPENDIX A COMPUTER SUBROUTINES

The following FORTRAN subroutines are the minimum that is required to implement a wavelet
analysis. Coefficients c, to c,., (all other coefficients zero) should be placed in the array elements
c( 1) to c(N). Subroutine scale places the values of scale function 4 at points 0 to N-i into the array
elements phi(l) to phi(N'). The function of interest is sampled at M points (M = 2 K) with
corresponding values f(l) to f(M). Subroutine fit will estimate the filtered samples that are used in
the initial approximation Aof and place them in the array elements a(l) to a(M). The wavelet
analysis is performed by subroutine decomp which replaces a(l) to a(M) with the wavelet
coefficients (a-K, d-K, =-K.1....., d'). Finally, subroutine recons can be used to undo the above analysis
to a level where there are ML scaling function basis terms.

"** Values of scaling function phi at points 0 to N-1 ***
*.**tWt**** ********w* ******~ *** ** **************t***********

subroutine scale(c,N,phi,
dimension c(N),phi(N),a(51,51),e(51)
nl=N-1
do 11 i=2,nl
do 11 j=2,nl
cc=0.0
ij=2* (i-l)-j+l
if(ij.ge.0.and.ij.lt.N) cc=c(ij+l)

11 a(i-lj-l)=cc
em=0.0000001
n2=nl-l
n3=51
call maxev(a,e,em,n2,n3)
phi(l) =0.0phi 07) -=0. 0
do 22 i=2,nl

22 phi(i)=e(i-l)
ph=0.0
do 33 i=l,N

33 ph=ph+phi (i)
do 44 i=l,N

44 phi (i)=phi(i)/ph
return
end

*•* *tt**t t************************************t*********t**

eigenvector corresponding to the maximum eigenvalue

subroutine maxev(a,e,emax,n,m)
dimension a(m,n),e(n),v(200)
if(n.eq.1) then
e(l)=1.
emax=a(l, 1)
return
endif
error=emax
do 1 i=l,n

1 e(i)=l.0
99 do 4 i=l,n

v(i)=0.0
do 4 j=l,n

4 v(i)=v(i)+a(i,j)*e(j)
eold=emax
do 2 i=l,n

2 if(abs(v(i)).gt.abs(emax)) emax=v(i)
do 3 i=l,n

3 e(i)=v(i)/emax
if(abs((emax-eold)/eold) .lt.error) return
go to 99

UNCLASSIFIED 21
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end

prdution of filtered samples from function samples

subroutine fit~a,M,f,phi,N)
real*4 a(m),f(ns),phi(N)
do I i=l,ns
a(i)=0.0
do I j=1,N
ix=l~j-2
ix=rnod( ix,M)
a(i) =a(i.1+phi(j, *f(ix~l)
return
end

convolution of arrays x and g

real*4 function conv(g,n,na,x~m,l)
real*4 g(n),x(m)
conv=0 .0
do I i~l,n
ix=l- i-na
if(ix.lt.0) ix=ix+m
ix=rnod( ix,m)
conv=conv+g(i) *x~ix~l)
return
end

'~wavelet coefficients from filtered samples

subroutine decomp (a,MHc, N)
real*4 a(M),c(n),gl(100),g2(lOO),ft(1024),dt(1024)
nl=-N+l
n2=-l
sqr2=sqrt (2.)
do 5 i=l,N
gl(i)=c(N-i~l) /sqr2

5 g2(i)=c(i)*real((-l)**i)/sqr2
nt =M

1 nn=nt
nt=nt/2
do 2 j=l,nt
k=j *2-l

2 ft(j)=conv(gl,N,nl,a,nn,k)
do 3 j=l,nt
k~j*2-1

3 ft(j)conv(g2,N,n2,a,nn~k)
do 4 j=l,nt
a (j +nt) =dt (j)

4 a(j)=ft(j)
if(nt.1t.2) then
return
else
go to 1
endif
end

**reconstitution of samples from wavelet coefficients '

subroutine recons (f,ML,c,N)
real*4 f(M),c(n),gl(100),g2(10OOft(1024).dt(1024)
nl=0
n2=-N4.2
sqr2=sqrt (2.)
do 5 iulN
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5 g2(i)=real((-1)**(i~l))*c(N-i+l)/sqr2
nt=1

I nn~nt
do 2 j=l~nn
ft(2*j-l)=f(j)
ft (2*j )=0.0
dt (2j-l)=f(nn~j)

2 dt(2*j)=0.0
nt=nt*2
do 3 j=l,nt

3 f(j)=conv(glN,nl. ft~rit,j).conv(g2,N,r12,dt~nt,j)
if~nt.ge.ML) then
return
else
go to 1
endif
end
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APPENDIX B SOFTWARE

The WV wavelet software package runs on a DOS PC and has the following facilities:

1) To choose a Daubechies wavelet and to display the wavelet function, the scaling
function and their respective Fourier transforms.

2) To enter and filter data.
3) To display data.
4) To display a frequency analysis of data (the amplitude of the discrete Fourier

transform).
5) To change to a logarithmic data scale.
6) To change to an exponential data scale (reverses 5).
7) To calculate the wavelet coefficients corresponding to user supplied data. The

coefficients are displayed in the format of Figures 11, 12 and 14. For a data set of
initial size 2 K (data sampled at unit intervals), the rows from bottom to top
represent the coefficients of projections Dlf,D_2f, .., DI_Kf. The first column

represents the coefficients of A_Kf and the second column represents the

coefficients of D.Kf. The top right hand box shows the display height in the
coefficient scale.

8) To display the projections AKf,DKf,DK.f,...,D_1f (only those projections above
a certain threshold will be displaye'1).

9) To output a graphics screen as a file of postscript instructions.
10) To exit the package.

It should be noted that a graphics screen is exited by pressing the enter key and that the
software can accept at most 1024 data samples (free format).

The computer disc contains the WV software and some sample data.
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